Second Order Differential Equation

Typical form of second order differential equation
                 y"=f(x,y,y')

Solutions
  1. y' and y missing :   y"=f(x) integrate twice with respect to x
  2. y missing : y"=f(y',x) 
    1. put p=y'    =>  p'=y"=f(p,x) this become first order equation
  3. y' and x missing : y"=f(y)     => put p=y'   =>    => this is seprable with respect to p and y.
  4. x missing   : y"=f(y',y) => put p=y' =>   

Second order linear homogeneous  equation with constant coefficients 
  1. form(characteristic) : y"+a1y'+a0y=0   => λ2+a1λ+a0=0  
    1. Solving this quadratic equation got 3 kind of roots.
      1. real and distinct λ1,λ2 then solution
        1. y=c1e(λ1x)+c2e(λ2x)
      2. λ1=a+ib and λ2=a-ib complex conjugates
        1. y=c1eax cos(bx)+c2eax sin(bx)
      3. λ1=λ2
        1. y=c1eλ1x+c2xλ1x
    2. equation should be linear,  homogeneous  and constant coefficient  only.
    3. This solution also workout for similar nth order equations.
Non-Homogeneous Equations
        L(y)=ϕ(x)  then General solution GS  y=yh+y =>   y=yc+yp
there is three way to find yp
  1. "Guesswork"
  2. Annihilator
  3. D-operator
Guesswork Method
  1. Polynomial function yp=g(x)=p0+p1x+p2x2+........+pnxn  Solve this equation with differentiating wrt x and equates coefficients of xn
  2. exponential function  yp=g(x)=Aeax      Solve this equation with differentiating wrt x
  3.  Trigonometrical function    yp=g(x)=A sin βx + B cos βx    Solve this equation with differentiating wrt x
  4. Above 3 will work for nth order differential equation.
Eluer equation : linear ODE with variable coefficients
            use y=xλ

No comments:

Post a Comment

would you like it. :)